If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x-0.01x^2=0
a = -0.01; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·(-0.01)·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*-0.01}=\frac{-100}{-0.02} =+5000 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*-0.01}=\frac{0}{-0.02} =0 $
| x+18/1=1 | | 28=1.3x | | (2x-4)^4=256 | | 3+5n=23 | | 4(2y-5)=20,2y-5 | | 2x²+4x²=360 | | 3x-7=2x-9,x= | | 7x-10)°(6x+20)°105=180 | | −7x−6=0 | | 7x−4=−4+7x | | 10/500=c/75 | | 9x°=8x+3° | | 8x+3°=9x° | | 5=5=2x=4 | | Y=1000-20x-15 | | 3(2x+5)-2(x-2)=9 | | C=25x+600R=40x | | –2(y–15)=–6 | | a=1/2(64)(24+36) | | 8b+4+8=4+4bb=-2 | | 7x-5+12=x+6 | | 2x+6-x+7+3x=11 | | 7r+2=20 | | 10x8=58 | | p-14=190 | | 8x+3=2(4x+1 | | 4x+6=5x–10 | | 3e+2=14 | | v=86198867604*3.14 | | 7/2t=1/2t^2+6t | | s=67-20 | | 4y2-14y+6=0 |